If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36x^2-7x-4=0
a = 36; b = -7; c = -4;
Δ = b2-4ac
Δ = -72-4·36·(-4)
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-25}{2*36}=\frac{-18}{72} =-1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+25}{2*36}=\frac{32}{72} =4/9 $
| (2x-7)/2=24.5 | | -1+7(x-5)=14x+2-7x | | -6x^2+24x+16=0 | | 12+9k=93 | | 15/40=x/25 | | 2x+14=26+x-2 | | 1/4+x=11/12 | | 7c+14=-5c+4+9c | | 7b-4b=48 | | m+5=23.4 | | 4(y+2)-6y=6y | | -28x=224 | | m=5=23.4 | | 104/q=13 | | z-8=37 | | 3.4=x-9.1 | | 9m-3=4m | | b-2b=-1 | | x÷12=8 | | a=2-1 | | (x+2)^2+x^2=5 | | 13u+10=10u+22 | | 4y+22=15y | | 6+3m=-15 | | -4(-3x+7)=-67 | | 2x^2+4x+4=5 | | u-11=4u-89 | | 5x-71=x+33 | | 8z-31=5z-16 | | 10-(6x)=-104 | | z-6=2z-66 | | x3=125/729 |